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ABSTRACT 

This report presents a detailed mathematical analysis of backprojection and "o)-k" 
(range migration) image formation equations for synthetic aperture radar (SAR). The 
image processor transfer function is computed for both stationary and moving targets, 
including antenna and target pattern effects. Assuming straight-line platform motion, it is 
demonstrated that both image formation algorithms provide exact focusing of stationary 
targets. Moving targets are displaced to false locations and blurred into elliptic or 
hyperbolic curves. Algorithms are suggested which will exactly refocus moving targets 
in SAR images based on only one unknown motion parameter. All results are derived 
without narrow-band, narrow-angle, or narrow-swath assumptions. 

Similar derivations for moving target signatures and focusing algorithms have been 
presented in [1]. Reference [1] also demonstrates the application of moving target 
focusing to experimental data. 
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1. INTRODUCTION 

1.1   SAR GEOMETRY 

Figure 1 shows the basic geometry for a synthetic aperture radar (SAR) data collection. 
The radar platform is assumed to follow a straight-line trajectory, with its antenna beam 
illuminating terrain to one side of the aircraft. Points on the terrain surface may be labeled 
according to the along track (cross-range) coordinate x and the cross-track (slant-range) 
coordinate y. The so-called "slant-plane" coordinates (x,y) are natural for image formation, and 
will be used throughout this report. Note that y is by definition positive. Converting from the 
slant-plane coordinates to fixed "real-world" coordinates (e.g., latitude-longitude-elevation) is 
straightforward, but does require precise knowledge of the terrain contour and the flight track 
geometry. 

x   --- 

I-' * ■ 

y \ 

Figure 1. SAR flight geometry. 



In practice, the aircraft will deviate somewhat from a straight-line path. Both image 
formation algorithms studied in this report can be adapted to compensate for off-track motion, 
but only the backprojection algorithm can provide exact image focusing for arbitrary aircraft 
motion and ground topography. To reduce the scope and complexity of the analysis in this 
report, all calculations will be performed for strictly straight-line motion. 

Figure 2 shows the radar platform moving past a stationary target on the ground. A fixed 
antenna beam is assumed, illuminating a region of angular width 0anton the ground. Most of this 
document will assume that the beam is uniform within the angle 9ant and zero outside. Section 4 
will show how arbitrary antenna patterns may be accommodated using a simple modification of 
the uniform beam results. 

<r 
Full Synthetic Aperture for Entire Image 

-> 

<r 
Aperture Relevant to Target 

■> 

Aperture Processed for Target 
i_< > 

Figure 2. Beam and aperture geometry. 



From the point of view of the target, the platform sweeps out an aperture of angular width 
dant during the time it illuminates the target. The SAR processor may use any part of the full 
aperture in forming an image. 

In stripmap-mode SAR, the processed aperture corresponds to a user-selected integration 
angle 0int < 6ant. Cross-range resolution in the image improves as dm is increased. Using a 
constant integration angle throughout the image produces an image with spatially invariant 
resolution and sidelobe structure. Note that the processed aperture is referenced with respect to 
the point being imaged, so different points in the image will be formed using different portions 
of the full aperture. Moreover, the length of the processed aperture will be proportional to range 
in order to maintain a constant integration angle. 

Spotlight-mode SAR uses all available aperture data to form the image. Spotlight-mode 
radars also may employ a steerable beam to maintain illumination on a fixed patch on the ground 
over a longer aperture. For clarity of exposition, this document will focus on stripmap-mode 
SAR, but most results (aside from antenna pattern effects) extend to spotlight-mode in a 
straightforward manner. 

1.2   SAR DATA MODEL 

1.2.1    "Hopping" Model 

As the radar platform moves along the synthetic aperture, it transmits a series of pulses and 
records the resulting backscatter. To simplify analysis, a "hopping" model will be used in which 
the platform hops forward from one pulse to the next, but remains stationary during the 
transmission and reception of each pulse. The approximation causes negligible errors as long as 

73 < 0.1—C-~, (1) 
\dR/dt\ 

where T is the pulse length, B is the transmit bandwidth, c is the speed of light, and dRjdt is the 
range rate of change for ground points in the radar beam [2,3]. Typically the constraint is easily 
satisfied for airborne platforms, but may be violated for orbital platforms. 

The hopping model may also be applied to moving targets. The target is assumed to move 
between pulses, but remain stationary during each pulse. Equation (1) determines the validity of 
the hopping model for moving targets, provided that the range rate dRjdt includes the combined 
effect of platform and target motion. 



1.2.2   Range Compressed Pulse Data 

No particular assumptions will be made regarding the radar waveform. Instead, it will 
simply be assumed that the return pulses are range compressed so that an ideal point scatterer1 

with unit cross section at range R will yield the signal 

S(t,R)=^e2*iM-2Rlc) smc(B(t-2R/c)), (2) 

where B is the radar bandwidth, fc is the center frequency, and sinc(w) = s'"^u). Expressed in the 

frequency domain, Equation (2) is an integral over a flat spectrum: 

1    /max 

S(t,R) = -\  f e2*if{'-2Rlc)df. (3) 
R   / 

/min 

The minimum and maximum frequencies fmin and /„^ are related to the radar bandwidth and 
center frequency by ftliD=fc- B/2 and frcax=fc + B/2. 

The range-compressed pulse data will be denoted by D(£t), where £ is the radar position 
along the aperture and t is elapsed time after pulse transmission. If there is just a single 
stationary point scatterer at (xo,yo) with unit scattering amplitude, the target range is 

U^ = 4i.^-^)2+yl, (4a) 

and the range-compressed data is 

D0(Z,t) = S{t,R0(Z)). (4b) 

If the terrain is described by a complex scattering amplitude density G(x,y), the range 
compressed data will be 

Dg,t) = l\G(x,y)si[t,yl(x-^)2 +y2)  dxdy. (5) 

The case of a single point scatterer is equivalent to G(x,y) = S(x-x0)S(y-y0). 

By definition, an ideal point scatterer has constant scattering amplitude as a function of frequency and direction. 
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Equations (2) through (5) implicitly assume uniform gain in frequency and direction for 
both the radar antenna and the terrain scattering. The more realistic case of nonuniform gain will 
be addressed in Section 4. 

1.2.3   Moving Target Model 

Consider a point scatterer target moving at constant velocity (with respect to slant plane 
coordinates). Working within the assumptions of the hopping model of Section 1.2.1, the 
corresponding range-compressed data can be written as 

Dm(£,t) = S{t,Rm(?)), (6a) 

where the target range is 

and the target coordinates are 

(<f) = V(^m- -tf +>i 

Xm = XQ+U M- -*b) 

ym 
= y0+u ,tf- -*b)' 

(6b) 

(7) 

The target motion is parameterized using the broadside position (xo,yo) and the normalized 
velocity components (ux,uy). The broadside position is simply the position of the target at the 
moment when it is directly broadside to the aircraft (i.e., when ^=x^. The normalized velocity 
components are the target velocity components (vx,vy) divided by the platform speed vpiatform' 

vx 
«* = — 

Vplatform 
\9) 

Vy uy= 
y— 

V platform 

Straightforward algebraic manipulation shows that 

Rm®=jAZ-xs)
2+y2s, (9) 

where 

y=J(\-ux)
2+u2 , xs=x0-^-yQ, and      ysJ—^±y0. (10) 

V 7 7 



The new quantities defined in Equation (10) all play important roles in the upcoming results. It 
will be shown that the motion parameter ^completely determines point target defocusing: at a 
given range, targets with the same ^have the same blurring. (Note that ymay be understood in 
physical terms as the target speed measured in the rest frame of the aircraft and normalized by 
the aircraft speed). It will also be shown that the quantities xs and ys are the shifted (apparent) 
coordinates of the target in the image. 

For later notational convenience, the parameter e is defined: 

,     1       -2ux+u2 .... £ = l T = 2  (11) 
y2    l-2ux+u2 

Stationary targets correspond to y = 1 and £ = 0. Both y and £ will be used freely in writing 
results, but it should be remembered that they are not independent quantities. 

1.3   SAR AS A LINEAR SYSTEM 

The process of SAR data collection can be thought of as a linear mapping LDC that 
transforms the terrain scattering amplitude into the range compressed data: 

LDC{G(x,y)} = D(Z,t). 

The transformation is linear in the sense that a linear combination of scattering amplitudes will 
map into a linear combination of range-compressed data: 

LDC {aGx (x, y) + ßG2 (x, y)} = flfLDC {G, (x, y)} + ßL^ {G2 (x, y)}. 

SAR image formation can also be thought of as a linear transformation LIF . It maps the 
range-compressed data into the image data, attempting to recover the original terrain scattering 
amplitude: 

I(x,y) = LIF {£(£*)} = LIF {LDC {G(x,y)}} « G(x,y). 

The recovery can only be approximate due to the limitations of finite radar bandwidth and 
aperture. In general, the image is a filtered version of G(x,y). The properties of any given image 
formation algorithm can be completely characterized by computing the transfer function of the 
aggregate transformation LIFLDC- By linearity, it suffices to compute the image function 
resulting from a point scatterer with unit scattering amplitude. 

The analysis presented in Sections 2 and 3 will focus on computing the image spatial 
spectrum I(kx,ky)=—x-^ \\dxdy I(x,y)e~' *x~'y>.  Starting from the stationary point scatterer data 



in Equation (4), it will be shown that both the backprojection and co-k image formation equations 
produce 

i(KX) = \ JE' "y 

■ix0kx-iy0ky for(kx,ky)eQ 

for(kx,ky)£Q 
(12) 

The band-support region Q, is illustrated in Figure 3, and defined as follows: 

0=    (&,ky) \fmin<^k<fmax,     ky>0 and l|Usin% , 

where k = yjkx+ky . (13) 

Figure 3. Band support region Qfor SAR image. 

Equation (12) shows that the backprojection and co-k image formation equations have ideal 
bandpass transfer functions. In other words, the image is a bandpassed version of the original 
scattering amplitude G(x,y), with no extra phases or amplitude factors introduced. The size and 



shape of the band-support region Q. reflects the transmitted waveform bandwidth, carrier 
frequency, and processed integration angle. 

1.4   MOVING TARGETS IN SAR IMAGES 

One of the basic assumptions in standard SAR image formation is that targets and clutter 
do not move while being illuminated by the radar beam. If a target does move, it will generally 
appear blurred and displaced to a false location in the image. The analysis in Sections 2 and 3 
will consider a moving point target and derive the resulting image in both the spectral and spatial 
domains. In the spectral domain, the moving target image data looks like the stationary target 
result of Equation (12) multiplied by a nonlinear phase function and a nonconstant amplitude 
function. In the spatial domain, the moving target is blurred into an elliptic or hyperbolic arc. 

The derived moving target signature may be used as the basis of an algorithm that 
reprocesses a standard SAR image to focus moving targets (and consequently blurs stationary 
targets). Despite the fact that the target velocity has two independent components, it will be 
shown that there is only one effective motion parameter that controls moving target focusing. In 
other words, an algorithm that seeks to focus moving targets of unknown velocity need only 
search over a o«e-dimensional space of possible focusing parameters. A second parameter is 
required only for precise compensation of motion-related distortions in the target and antenna 
patterns. 

A closely related discussion of moving target focusing is presented in [1]. 



2. BACKPROJECTION IMAGE FORMATION 

2.1   BACKPROJECTION EQUATION 

Given range-compressed data D(%,t), define the backprojection preprocessed data by 

1 
FBPtlO = 27ti 

Ux\2 dD(£,t) (14) 

\c J dt 

The backprojection image is given by the equation 

x+ytan^ 

I(x,y) = y     j     FBP[z±J{x-tf+y2)dZ (15) 

The basic backprojection algorithm has been discussed in a number of places in the SAR 
literature [3,4]. The exact details of the backprojection equation vary somewhat among different 
authors; the preceding definitions are chosen to yield an ideal bandpass transfer function. 

In practice, Equations (14) and (15) are applied to digitally sampled data. The integral in 
Equation (15) is approximated using a sum over discrete aperture positions. Computing the 
integrand in Equation (15) requires a suitable interpolation in t for FBp(£t). 

The derivative in Equation (14) must also be adapted to discrete data. The easiest approach 
is to combine the derivative with the range compression process. Frequently compression is 
performed by convolving a matched filter M(f) with raw pulse data Draw(&i). The derivative is 
given by 

In other words, the derivative can be applied just once to the matched filter M(f) prior to any 
processing. The range compressed data will then automatically be differentiated, with no extra 
computation required. The derivative of a discretely sample matched filter can be performed 
easily in the frequency domain by multiplying by a factor of frequency. 

In recent years, a number of accelerated backprojection algorithms have been developed 
[5-7]. The accelerated algorithms do not change the basic structure of Equations (14) and (15). 
Instead, they break the required numerical calculations into stages of increasing resolution, 
organized to reduced the total number of operations. The analysis in this section should apply 
equally well to any of the accelerated backprojection algorithms. 
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2.2   STATIONARY PHASE ANALYSIS (STATIONARY TARGET)2 

Assume that the radar illuminates a stationary point scatterer target, as described in Section 
1.2.2. The range compressed data is given by Equation (4b). Plugging the range compressed 
data into Equation (14) yields the backprojection preprocessed data: 

FBP&t) = 
^   An   Y   fmsx     i-rift'-i 

cRotf) V"*0\bV     /„ 
•I     [fe^'^df. (16) 

Plugging Equation (16) into the backprojection Equation (15) and computing the spatial 
spectrum yields the four-dimensional integral 

I(kx,ky)=-\dy]dx    j     d£ \ df-j-^e c^ >.    (17) 
c  o    -    x_yVj^_     /m,,     *b(£) 

The remainder of this section will be devoted to evaluating Equation (17) using the method of 
stationary phase3. 

The first step is to make the following change of variables: 

co = —/, Z = x-i, and   C = $-Xo. (18) 
c 

The spatial spectrum becomes 

^uul   2 °° c •'max 

hK,ky) = -^e-^\dy    I    dZ\dC   |   da-^e?**"*», (19) 

where the phase function <& is defined as 

SOT, y, £\ft>) = -zkx -Ckx- yky + w^x1 + y2 - co^C + yl ■ (20) 

The first derivatives of <E> are 

2 
The stationary target case is, of course, subsumed within the moving target case treated in Section 2.4. The reader 

may regard the stationary target calculation as a "warm-up" for the more general discussion to come. 
3 See Appendix for a brief review of the multidimensional stationary phase approximation. 

10 



*W+- **> 
*%~   x  ^ 

— --Jr   -        Z® 

vr+>ä 
90_ yd) 

du) ■■h2+y2-W^yi (21) 

Solving the equation V<I> = (||-,^,|f->|^) = 0 shows that there is a single stationary point 

(Z, y,C,&) = (z,y,C,d>), where 

k k 
Z = yo-rr>      y = y0sga(ky),      C = -yorf] 

y\ \ y\ 

and      a> = k = yjk2+k2
y.     (22) 

(Note that y0 > 0 since slant range is an intrinsically positive quantity).  If the stationary point 
falls outside the integration limits of Equation (19), the integral is zero. A simple analysis shows 
that the stationary point is inside the limits of integration if and only if (kx,ky)e Q, where 

ß = { (*,,*,) |/»a <**</«.     *,>0 and l|l<sin% (23) 

The band support region Q is illustrated in Figure 3. The matrix of second derivatives of <I> is 

a2<D= 

y2a> xya 

[z2+y2) 

xy(o 

3/2 3/2 

(z2V) 

o 

47^7 

3/2 

(z2+y2) 

z2® 

{z2+y2f2 

o 

0 

y20) 

V? + / 

{?+ylY 

z     ) 
4z2+y2 

y 

Jz2+y2 

C 
4t2+yl 

0 

) 

(24) 

A tedious but straightforward computation gives the determinant: 
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detd2<D = 
2    2 

Jx^f(?+yl)V1 

Plugging in the values from Equation (22) for the stationary point yields 

d26 = d24>(i",j>,£ß>) = 

y0k
2 

~y0k
2 

o 

K 
V    k 

and 

~y0k
2 

kx*y 

yQk
2 

0 

0 ^L 
k 

K 
k 

0       -2- 

y0*
2 k 

0 

(25) 

(26) 

deta26 = -1^T 
y2

0k
2 

(27) 

The determinant is positive definite  since   k * 0   in the band support region Q. 

Consequently, d <D cannot have any zero eigenvalues. A numerical eigenanalysis with 
kx = ky = y0 = 1 shows that there are two positive and two negative eigenvalues. Any continuous 

deformation of the parameters kx, ky, and yo will results in a continuous deformation of the 
eigenvalues. Since eigenvalues cannot cross zero, it follows there will always be two positive 
and two negative eigenvalues. Consequently, 

sigd26 = 2-2 = 0. (28) 

Combining the information from Equations (22), (27), and (28) with the stationary phase 
Equation (A.8) leads to the result 

/(*„*,) = ■ 
-«0**-'>0*y 

0 
for (kx,ky)eQ 

for (kx,ky)£Q 
(29) 

12 



Equation (29) shows that the backprojection image formation equation has an ideal 
bandpass transfer function. In other words, the image is a bandpassed version of the original 
scattering amplitude G(x,y), with no extra phases or amplitude factors introduced. The size and 
shape of the band-support region Q reflects the transmitted waveform bandwidth, carrier 
frequency, and processed integration angle. 

2.3    IMPACT OF PREPROCESSING STEP 

It is possible to form images without performing the preprocessing step in Equation (14). 
In other words, the image is computed directly from the range-compressed data: 

I(x,y) = y     J     D^VU-^V)^- (30) 
x-ytznQf- 

Equation (30) may be analyzed exactly as in Section 2.2. The only change is that the integrand 
in Equation (17) loses a factor of/and some multiplicative constants. Since the phase function 
O is the same, the coordinates of the stationary point in Equation (22) and the matrix of second 
derivatives in Equation (24) remain unchanged. The final result is 

I(kx,kyy. 
0 for (kx,ky)£Q 

Comparing Equations (31) to (29) shows that skipping the preprocessing step introduces a 
non-uniform gain factor proportional to yk. For ultra-wideband radar, the extra non-uniform 
gain factor can have a measurable impact on resolution and sidelobe structure in the image. 

2.4   MOVING TARGET ANALYSIS 

2.4.1   Stationary Phase Calculation of Image Spectrum 

Consider a point scatterer target moving at constant velocity, as modeled in Section 1.2.3. 
The moving target data may be processed into an image using the standard backprojection 
Equations (14) and (15). The resulting image will be analyzed in this section using the same 
stationary phase analysis applied to the stationary target case in Section 2.2. Putting the range- 
compressed data from Equation (6a) into the preprocessing Equation (14) yields 

13 



/max 

FBP($,t)= ) fe df. (32) 2*»r('-fJW#)) 

Plugging the preprocessed data from Equation (32) into the backprojection Equation (15) 
and computing the spatial spectrum yields the four-dimensional integral 

4  ~r       "-       X+yXaTT        /max r -M     iyk  +^HLÜ(x^+2 _R   ^ 

/(*,,*,) = £/*/&     J     ^J#-X_e ''^ J.     (33) 
c  o    -    ^^     /min     *»l^ 

Note that Equation (33) is the same as the stationary target case in Equation (17), except for the 
substitution RQ-^Rm. The remainder of this section will be devoted to evaluating Equation (33) 
using the method of stationary phase4. 

The first step is to make the following change of variables: 

<» =—/, Z = x~Z, and   £ = yg-xs). (34) 
c 

The spatial spectrum becomes 

*tan%i .. 4l/r 

hkx,ky) = -^e-*>k* \dy    j    dX\dC   \   dm-g^J«****\ (35) 
Alt?        o    ^    I    ^,       C+y, 

2 

where the phase function 4> is defined as 

*{z*y,£*v)=-xK -—-yky +coyjz
2+y2-iOylc2+y 

The first derivatives of O are 

90 _   7   _      x® d® _ _ K C°> 
Sx=~k'+'J7^7 *(~ y ^7, 

4 
See Appendix for a brief review of the multidimensional stationary phase approximation. 
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Solving the equation VO = ($,Q,^>&a) = 0 provides the stationary point coordinates 

k - & 

yj^+ek2 s ryjky+et 

y=ys , 2
ky  . w=k=^k2

x+k2
y, (38) 

where £ = 1—=-. 
r 

If the stationary point falls outside the integration limits of Equation (35), the integral is 
zero. A simple analysis shows that the stationary point is inside the limits of integration if and 
only if (kx, ky ) e Q y, where 

Ur — <  (kx,ky) I /min < An £</maX,     ky>0 and I|i<mm(sm4f,r)   • (39) 

If ^>sin(#int/2), the band-support region QY is the same as in the stationary target case 
illustrated in Figure 3. If ^<sin(#int/2), the angular width of the band support region is 
reduced as shown in Figure 4. 

The matrix of second derivatives of <I> is 
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d2<t>= 

y2ü) 

(x2+y2) 

xya 

3/2 

(x2+y2) 

0 

X 

3/2 

I 

(x2+f) 

X2a 

(z2+y2) 

o 

_ y 

x2+y2       4x2+y2 

3/2 

3/2 

ft® 
3/2 

X 

h2+y2 

y 

h2+y2 

S 
V?+*2 

0 

(40) 

\ 

An f 
c J mm 

\     ty2     \  &J2 c ./max 

ev a„ 
sin-f- = y<sm- „ 

2    ' 2 

>    kc 

Figure 4. Band support region Qrfor moving target SAR image when y < sin (#int /2). 
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A tedious but straightforward computation gives the determinant: 

2 ,.J. 

deta2<D = - ys<° 
\3/2 

Plugging in the values from Equation (38) for the stationary point yields 

d2& = d2<P(Z,y,C,a>) = 

y V y "**    x kxkyyjky +£kx o *i 

y,k2 y,k2 

0 

k 

^x^yy^y "^ ^x 

ys*
2 

kxyky + £kx 

ysk
2 k 

0 0 
(k2

y+ek2
xf

2 

yt2 ky 

L h. K 0 
ky 

and 

det32<D = 
(k2

y+£k2
x)

2 

.2 T2 
^ 

(41) 

(42) 

(43) 

It may be easily shown that the determinant is positive definite in the band support region 
£iy. Consequently, 324> cannot have any zero eigenvalues. A numerical eigenanalysis with 
kx = ky = ys = 1 and £ = 0 shows that there are two positive and two negative eigenvalues. Any 
continuous deformation of the parameters kx, ky, ys, and £ will results in a continuous deformation 
of the eigenvalues. Since eigenvalues cannot cross zero, it follows there will always be two 
positive and two negative eigenvalues. Consequently, 

sig82<f> = 2-2 = 0. (44) 

Combining the information from Equations (38), (43), and (44) with the stationary phase 
Equation (A.8) leads to the result 
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I(kx,kv)= xi"y 

*-%V' "i*x-%V*y+^ 

0 fox(kx,ky)£Qr 

(45) 

The spectrum depends on the target motion purely through the single motion parameter 
Y = -sj(l-ux)

2 + u2 . (Recall that the parameter fis a function of y, as defined in Equation (11)). 

2.4.2   Moving Target Signature in Spatial Domain 

The moving target signature in the spatial domain is given by the inverse Fourier transform 
of the spectrum in Equation (45): 

I{x,y) = \\dkxdky   I(kx,ky)e 
ixkx+iyky = JjÄ,Ä,-4^«m*^> 

Qv 
~y rfi2-'2 rjk$+eic; 

(46) 

The phases have been collected into the function *F: 

x¥(kx,ky) = (x-xs)kx + yky-ysJk2
y+£k2 . 

The derivatives of the phase function are 

dkr 

x~xs~ys 

ek. 

4 k2+£k2 
and **—~        *y 

dk. = y-ys 4 k2+ek2 

(47) 

(48) 

Solving the stationary phase equation V*F = (^-,^) = 0 shows that there are no stationary 
x     "*y 

points unless 

-(x-xs)
2 + y2 = y2       and     y>0. 

£ 
(49) 

When Equation (49) holds, the stationary phase equation is solved by all points (kx,icy), which 

satisfy 
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%*-= ?-$-. (50) 
ky     £y 

In other words, the solution is a "stationary line" in the (kx,k ) plane rather than a single 

stationary point.  Consequently, the stationary phase equations in the Appendix do not directly 

apply to Equation (46). The existence of a stationary line implies that det d2x¥ = 0, so a formal 
evaluation using Equation (A. 8) will produce a meaningless infinite answer. Nevertheless, the 
basic principle underlying the stationary phase method still applies to Equation (46): the integral 
should be "large" when stationary points exist and small otherwise. It follows that the blurred 
target will appear as a curve in the (x,y) plane satisfying Equation (49). For e>0 the curve will 
be elliptic, and for £<0 it will be hyperbolic. Equation (50) determines the length of the curve 

since the stationary points (kx,ky) are required to lie in the band support region £ly. 

The curve of the blurred target signature may be written in parametric form as follows: 

For £>0 (i.e., y>l): 

x = xs + \£ys sin (p, 

y = yscos<p, 

where |tan^|< vf minlsin-^,^). (51) 

For £-<0 (i.e., y<\): 

x = xs + yl\£\y ssinh<p, 

y-ys cosh <p, 

where |tanh (p\ < ^B\ min (sin ^,y). (52) 

The curves in Equations (51) and (52) are illustrated in Figure 5.  Note that curves with s> 0 
always bend toward the flight track, while curves with e< 0 curve away. The point (xs,ys) is 

the center point of the blurred target curve; it is related to the true target coordinates via 
Equation (10). 
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(x,y) = (xs,ys) e   <   0   (hyperbolic) 

£ > 0    (elliptic) 

Figure 5. Moving target signature in spatial domain. 

2.4.3    Expansion for Small Target Velocities 

When ux «1 and uy «1, the following leading-order expansions become relevant: 

£~-2ux,       xs~x0-uy0, and      ys=yQ--ulyfi. (53) 

At leading order, defocusing (governed by e) depends only on the along-track velocity 
component. Target displacement depends only on the cross-track velocity component, and there 
is no cross-track displacement at first order. 

2.4.4   Refocusing Moving Target Images Via Spatially Variant Filtering 

As demonstrated in the previous sections, a moving target will appear as an elliptic or 
hyperbolic streak in a standard SAR image. It is possible to "refocus" the SAR image so that all 
moving targets with e = eF at a given range v = yp appear well focused. Refocusing is 
accomplished by applying a filter with the following transfer function: 

^,*,;^F)=^«/'^-''). (54) 

Applying the filter in Equation (54) to the moving target spectrum in Equation (45) produces the 
point target spectrum 
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provided that e = £F and ys = y>F-   If the filter parameters £F and yp differ from the target 
parameters sandys, focus quality will degrade. 

The focusing filter may be applied by computing the two-dimensional FFT of the image 
data, multiplying by the transfer function Equation (54), and computing the inverse FFT. To 
provide exact focus at different ranges in the image, the entire process must be repeated with 
different values of yF- 

2.4.5   Refocusing Moving Targets Via Frequency-Domain Resampling 

The method described in the previous section will correctly focus moving targets, but may 
require many filtering operations to cope with the range-dependence of the filter. This section 
will describe an alternative refocusing method that provides exact focus for all ranges 
simultaneously. The basic idea is to resample the frequency domain image data as follows: 

!^ky^)=l^^^^k2y-£^)- (56> 

The coordinate transformation in Equation (56) is analogous to the Stolt transformation 
performed in the co-k image formation algorithm [8]. Applying Equation (56) to the moving 
target spectrum in Equation (45) yields 

Ip[kx,ky,ep)-^-j——e . (5/) 

When Ep - £, the target is perfectly focused: 

lF(kx1ky;e)^e^^'. (58) 

There is one important subtlety in Equation (56) that must be addressed for practical 
applications. The image spectrum I in Equation (56) is the Fourier transform of the entire 
(infinite) image plane. In practice one works with 1^°, the transform of a finite-sized array of 
image data centered on some point (xayc). The two are related as follows: 

ldata(kx,kv) = I(kI,kv)ebCekx*iyeky . (59) 
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The same relation also applies to the refocused image. Combining Equations (56) and (59) leads 
to the result 

fr^'rhlhr^^^fZ1**)   e^'-^.   (60) 

iyJky-Jtf-efk*) 
Comparing Equations (60) to (56) shows that the extra phase factor e  K J is 

required for focusing /rfato. The refocusing process in Equation (60) becomes especially easy to 
t • ~ rlntn "'data "data 

understand when rewritten as a two step process /     -» /,     -»IF   , where 

^(M^F) = ^M^F^C)^(*X.^) (61) 

Ipta(kx,ky;eF) = I?°!a[kx,^k2
y -eFk\) . (62) 

The first step in Equation (61) applies the focusing filter Ü specified in Equation (54); it 
provides exact focus for targets at range y = yc. The second step in Equation (62) is a non-linear 
resampling in the ky direction, which extends exact focus to all range values. 
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3. <D-K IMAGE FORMATION 

This section will demonstrate, within the stationary phase approximation, that the (O-k 
image formation equation produces stationary and moving target signatures precisely identical to 
those produced by backprojection. A direct calculation for the stationary target case will be 
omitted, since it is just a special case of the moving target result. 

3.1    IMAGE FORMATION EQUATION 

The basic input to image formation is the range compressed data D(%,t). The ok equation 
computes the image spatial spectrum directly: 

i(K,K) = \ x>   y 

k„e 4 

\dl-\dt (f )3   Dfct) e* 2*     for (kx,ky)e Q, jj^ J a<>  J al    \ 2)       "IS'1)    * lOI^K^Ky)<=*£, (63) 

0 otherwise. 

The band support region Q is defined according to Equation (13).   As in previous sections, 

k = Jkl + ky .  The image is computed by an inverse Fourier transform of 7.  More detailed 

discussion of the co-k algorithm (also known as range migration) and its history may be found in 
[8]. In the published literature, there are some variations in the multiplicative factors included in 
Equation (63). The particular factors used above are chosen to yield an ideal bandpass transfer 
function. 

3.2 STATIONARY PHASE ANALYSIS (MOVING TARGET) 

Consider a point scatterer target moving at constant velocity, as modeled in Section 1.2.3. 
The range compressed data Dm(^,t) is strongly peaked at t = 2Rm(^)/c, which enables the 
following approximation: 

(f f2Dmtf,t) - Xm(gf2Dm(£,t). (64) 

A more rigorous approach to the approximation in Equation (64) is to regard it as the first term in 
a Taylor expansion of ?3/2 around the point t = 2Rm(^)/c. A rather laborious calculation, not 
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reproduced here, shows that the correction to the image from the next term in the Taylor 
expansion is smaller by a factor of order \/kR ~ A/R. 

Inserting the moving target data into Equation (63) and applying the above approximation 
yields 

To simplify the notation, it is assumed that (kx,ky)eQ. The integral over t simply produces the 

Fourier transform of the range compressed data: 

Making the change of variable £ = y(^-xs), Equation (65) becomes 

k„e4 

!^ = dh\dt-^= 
where the phase function O is defined as 

The derivatives of the phase function are 

J*iC) 

(66) 

2    2<r»', (67) 

(68) 

30 kx k£ 32<D k k£2 

The stationary phase condition J| = 0 is satisfied at the point £ = £, where 

£= f^=- (70) 
Yyjk;+£k* 
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\k I The stationary point exists if and only if the condition ^f- < y is satisfied. At the stationary point 

<KO = -ysJk2
y+ek2

x      and     |^(ft=- 
dC2 

{k2
y+£k2

x) 

k\ 

Applying the stationary phase Equation (A.2) to the integral in Equation (67) yields 

I(K,kv) = ] r(k Y^l+skl 
fox(kx,ky)<EQr 

for (kx,ky)iQy. 

(71) 

(72) 

The modified band-support region Qy is defined in Equation (39); it incorporates the condition 

IA I -f-<y required for the existence of the stationary point. As promised, the co—k image spectrum 

in Equation (72) is identical to the backprojection spectrum in Equation (45). 
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4. ANTENNA AND TARGET PATTERN EFFECTS 

In previous sections, it was assumed that the SAR antenna has a transmission pattern 
uniform in frequency and direction. Similarly, it was assumed that the target and terrain 
scattering patterns are uniform. In this section, the uniformity assumptions will be relaxed, 
allowing arbitrary (but slowly varying) patterns instead. 

Figure 6 shows the basic platform/target geometry. In slant plane coordinates, the platform 
position is (£0) and the target position is (xm,ym). The angle between the flight track and the line- 
of-sight to the target is K. The patterns are expressed in terms of the complementary angle 
d = 7t\2-K and the frequency/ Note that 0is also the angle with respect to broadside. The 
SAR antenna pattern will be denoted by the complex-valued function Aant(f,6), and the target 
scattering pattern by Atarg(f,6). Both patterns also depend implicitly on the cross-track position 
of the target. 

"G" 
j- 

K /e 

6 I 

ifSi 

Figure 6. Platform/target geometry. 

The angle #is related to the platform position by the equation 

6 = tan"1 

V y 
(73) 

m     J 
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The basic range compressed data of Equation (3) is easily modified to including the antenna and 
target pattern factors: 

1 
S(t,R) = —  J e2mf{l-2R/c)Aanl(f,O)Aarg(f,0)df. (74) 

4.1   STATIONARY TARGETS 

For the stationary target case, 

and 6 = tan" 
^ yo J 

(75) 

The backprojection stationary phase analysis in Section 2.2 may be repeated using the modified 
range compressed data in Equation (74). The antenna and target pattern factors propagate 
directly through the calculation to the final result. The stationary point coordinates are 
unchanged since the phase function <E> is not affected by the slowly varying pattern factors. The 
stationary point values for/and 6 are 

}=-£-k=jLrk 
Atr Air » 

Jk2
x+k2

v 
A K and      6 = tan"1 -^ 

k„ 
(76) 

The backprojection image spectrum is 

. H^ik^H^ik^e'^-^ for (kx,ky)eQ 
X' v        0 for (kx,ky)eQ, 

where the antenna and target transfer functions are given by 

f 

Hant \kx >ky) — Aant 

**targ K^x»"> ) — ^targ 

C   ,     .      -i K \ Jt.tair'-^- 

—A:, tan '-£■ 
KAn kyJ 

(77) 

(78) 

In short, the antenna and target patterns are manifested as filters that act on the slant-plane image 
data. Note that the relation between the fiTs and the A's is just a transformation between polar 
coordinates and Cartesian coordinates. 
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Despite the identical mathematical properties of the antenna and target patterns, there is an 
important distinction in terms of practical application. The target pattern will differ from target 
to target, providing useful information characterizing the targets. The antenna pattern is fixed, 
and it obviously provides no information about targets. Any nonlinear behavior in the phase of 
Hml(kx,ky) will cause blurring in the image. 

To generate calibrated imagery, a post-image formation filter must be applied to 
compensate for the antenna pattern transfer function. The calibration filter is defined by 
inverting the transfer function of the antenna: 

"cai\K->K) — 
1 

"antV^jc'^v) 

(79) 

In practice, the inversion will be approximate for several reasons. First, an FIR digital filter 
needs to have a finite number of taps. Second, the exact inversion in Equation (79) can become 
singular or nearly singular, which would result in undesirably large amplification of the noise 
floor. Finally, knowledge of the antenna pattern is almost certainly approximate, so it is 
pointless to attempt an exact inversion. 

The calibrated image spectrum is 

Ic(kx,k ) — 
Ht(kx,k,)e~iX(ikx~iyoky for (kx,kJeQ targ 

0 
x'   y 

for (kx,kj€Q. 
(80) 

4.2   MOVING TARGETS 

The moving target coordinates (xm,ym) are given in Equation (7).   The backprojection 

stationary phase analysis in Section 2.4.1 may be repeated using the modified range compressed 
data in Equation (74). The antenna and target pattern factors propagate directly through the 
calculation to the final result. The stationary point coordinates are unchanged since the phase 
function <3> is not affected by the pattern factors. The stationary point values for/and 0 are 

f=—k=—Jk2
x+k2

y 
An      4tfv *     y and      0 = i/f + tan 1 

Vy]k2
y+£k2 

(81) 

The angle iff describes the direction of the target velocity relative to the radar platform: 
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-1    Uv ^ = tan l—*~. (82) 
\-ux 

The normalized target velocity components (ux,uy) can be expressed in terms of the motion 
parameters y and y/: 

l-ux = ycosy/ 

uy = ysm y/. 
(83) 

The backprojection image spectrum (prior to antenna pattern calibration) is 

where  Inopat(kx,ky)  is the moving target spectrum without pattern effects, as given in 

Equation (45).  The pattern factors may be written in terms of the transfer functions defined in 
Equation (78): 

(85) AanAfM = Hant    -*-COS 1/S+ Jlc2 + £k\ SUl If/ , Jkl + £kx COS ^ ^SUl^ 
K7 v v y 

An analogous equation hold for \ ■arg 

Since the antenna pattern transfer function is modified by target motion, calibration 
becomes more complicated. In general, the calibration filter in Equation (79) will not 
compensate for the transfer function in Equation (85). The only exception is when the antenna 
pattern is independent of the direction 6. Target motion only affects the stationary point value 
of 0, not /, so the antenna pattern transfer function is the same as for stationary targets. The 
calibration filter of Equation (79) can be used to remove the antenna pattern effect, and then 
moving targets may be focused as described in Sections 2.4.4 and 2.4.5. 

4.3    MOVING TARGET REFOCUSING AND CALIBRATION 

The moving target refocusing algorithm of Section 2.4.5 may be applied as is to 
uncalibrated image data with nonuniform target and antenna patterns. In other words, the image 
data given by Equation (84) can be plugged directly into the refocusing formula of 
Equation (56). For a point target located at (xQ, y0), the result is 
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where 

~ i \       (k k 
IF[kx,k'€) = H — cosw+kvsinus, kvcosyr—*-sinuf v       ;    {r r 

H(kx,ky) = Hant{kx,k)Htar<kx,kv) 

-«A-%*y (86) 

ant \""x»   y >    targ v\x'   y J 

is the lumped transfer function of the antenna and target patterns.   Note that Equation (86) 
assumes that the correct value of £ was used when applying the refocusing equation. 

The antenna pattern in the refocused image can be removed by applying a calibration filter 
with the transfer function5 

H^ikM^H 
\ 

—cosy/+kvsmy/, kvcosur—-svaw 
K7 7        . 

-l 

(87) 

A key observation is that only one parameter (e, or equivalently, y) is required to focus moving 
targets, but the extra parameter yr is required for antenna pattern calibration. 

Even after applying antenna calibration with the correct value of iff, Equation (86) shows 
that the target pattern is still distorted by a mix of rotation and stretching in the (kx,ky) plane. It 
is possible to obtain undistorted target patterns by using an alternative calibration procedure. 
Rather than applying the filter in Equation (87), the following transformation can be applied to 
the refocused image: 

IF2{kx,ky; £,ur} = IFiykxcosy/-ykysmy/, kxsuMj/+kycosy/\e). (88) 

For the point target case, the result is 

/„ (*,,*,; e,r) = H„(kx,ky)H^(ks,ky)e-4trTk'-»n*>. (89) 

The coordinates (x^, v^) are "fixed-time" coordinates of the moving target. In other words, 
they are the target coordinates at the time the platform reaches the position £ = 0 along the 
synthetic aperture. They are related to the broadside coordinates6 (x0,j;0) as follows: 

The inversion is to be understood with the same caveats that apply in the stationary target case. 
6 i.e., the position of the target when it is broadside to the SAR platform; see Equation (7). 
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xFT=x0(l-ux) = x0ycos y/ 

yFT=yo~ uyxo=yo~ xo7sin ¥■ 
(90) 

The transformed image data in Equation (89) can then be calibrated using the ordinary 
stationary-target calibration filter in Equation (79). The target pattern is undistorted by virtue of 
the transformation in Equation (88). As a side benefit, the target image appears at the true fixed- 
time location ixpj^^), instead of the shifted position (xs,ys). 

There are two important points practical points that are worth addressing here. The first 
point concerns the fact that true image data is typically centered on some point (xc,yc), while 

the above equations implicitly assume the image data is centered at zero. The matter was 
addressed in Section 2.4.5, and the same solution applies here. The second point is that the two- 
dimensional resampling step in Equation (88) would be easier and more efficient to implement in 
terms of two sequential owe-dimensional resampling operations. 

Taking    the    above-mentioned 
rdata -data 'data "data -data 

points 
-data 

into account, a multi-step procedure 
jaata _^ ^ _^ _^ ^ _^ _^ j^ .g SUggestecj for joying target focusing and 

antenna calibration. The steps are as follows: 

rdata (kx,ky;€F) = Ü(kx,ky;£F,yc)l
da,a(kx,ky) 

fdata 
"2 

/ 

I2    \kx,ky;£F)-Ix     \kx,^ky-eFkx\ 

I?'a(kx,ky;£F,WF) = f2 

~Ca{K,ky> £F,VF) = i?"a(rK™sYF-rkysmvF, ky; EF,VF) 

kx,—tzni/fF+k sec^f; eF 

7 

i?a{kx,ky;eF,y,F) = 1 

"antykx'Ky) 
if,a{kx,ky;eF,¥F). 

(91) 

(92) 

(93) 

(94) 

(95) 

The "data" superscript has the same meaning as in Section 2.4.5, indicating image data centered 
at (xc>yc) • Tne first two stePs in Equations (91) and (92) are precisely identical to the focusing 
algorithm given in Equations (61) and (62). The next two steps in Equations (93) and (94) 
perform one-dimensional resampling operations that undo the scaling and rotation effects in the 
antenna and target patterns. Note that the combined effect of Equations (93) and (94) is identical 
to that produced by Equation (88), but the latter requires a more complicated two-dimensional 
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resampling. Finally, Equation (95) calibrates the image by eliminating the antenna transfer 
function. Caveats discussed in the previous section regarding inversion of the antenna transfer 
function apply equally well here. 

Applying Equations (91-95) to a point target with the correct values eF = £ and yrF=ys 

produces the spectrum 

The target is focused at the "shifted fixed-time" coordinates (xSFT,ySFT) that are related to the 

"fixed-time" coordinates in Equation (90) as follows: 

xSFT = xFT +xc(l- y cos yr) - yc sin y/ 

ySFr=yFT+xcrsinv/+yc(l-cosv/)- 

A nice feature of the multistep focusing procedure above is that the operations occur in 
order of importance (most to least) as well as order of complexity (least to most). Applying the 
first step in Equation (91) requires just one focusing parameter, no resampling, and will mitigate 
most of the blurring due to target motion. The second step introduces no new parameters, 
requires only one-dimensional resampling, and extends focus to all ranges. The remaining steps 
require a second parameter and multiple resampling steps to achieve an undistorted target 
response with the antenna pattern removed. The number of steps actually implemented in a 
practical system can be chosen to suit the desired accuracy and available computing resources. 
Conceptually, each additional step makes a correction at a more subtle level man the previous 
one, with the full sequence providing an exactly focused and calibrated image. 
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APPENDIX 
STATIONARY PHASE EQUATIONS 

A.1 ONE DIMENSIONAL INTEGRALS 

Consider an integral of the form 

I = jg(x)eif,mdx, (A.1) 
v 

where $(x) is strictly real-valued. As // becomes large, the phase factor elfU^x) will fluctuate 
rapidly. The rapid fluctuations tend to cancel out, except at stationary points where -^ = 0. 

Asymptotic analysis in the limit // -» +°° leads to the stationary phase equation 

k\\/4(Xk)\ 

:=i = 0. If there are no The sum is over the set of stationary points xkeV where (t>\xk) = -£ 

stationary points in the integration region V, then I~0 at leading order in the asymptotic 
expansion. The "sgn" function in Equation (A.2) simply returns the sign of its argument: 

sgn(x) = 
+1   ifx>0 
0   ifx = 0 (A3) 
-1   ifx<0. 

Equation (A.2) applies under "generic" conditions: </>"(xk) * 0 and no stationary points on 
the boundaries of the integration region V. A careful derivation of (A.2) and discussion of 
conditions on the functions $x) and g(x) may be found in a variety of references; an excellent 
exposition is provided in [9]. For the purposes of this document, the integrals evaluated are 
always of "generic" type and Equation (A.2) will be applied without further discussion of any 
subtleties. 

The derivation of Equation (A.2) may be sketched as follows. At leading order, the only 
parts of the integral Equation (A.1) that matter are near the stationary points. In other words, 

lÄ Z   J g(x)eiftmdx = ^ jg(xk + s)ei^(ik+s)ds (A.4) 
*  xk-e *  -e 
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for some suitable value of £ Expanding <f> to second order around the stationary point(s) and 
treating g as a constant yields 

/ - Is&y«^ )e^'iik)is-ik)2ds. (A.5) 
* -e 

Since the integrand fluctuates rapidly for \s\>£, the limits of integration may be extended to 

infinity without changing results at leading order. The resulting Gaussian integral may be 
computed exactly, producing the final result in Equation (A.2). 

A.2 MULTIDIMENSIONAL INTEGRALS 

The TV-dimensional stationary phase integral is of the form 

I=JG(±)eif^(x)dNx. (A.6) 
v 

The bold symbol x denotes an N-dimensional real vector, and cfx denotes integration over the JV 
components of x. The stationary phase derivation proceeds exactly as in the one-dimensional 
case. The stationary points are xk e V such that V4>(xjt) = 0. 

After expanding 3> to second order around the stationary point(s), the integral becomes 

/ - £G(i,y**(i<> j^^Vi. (A.7) 
k 

The notation 320(x/t) represents the matrix of second derivatives of <E> at the £-th stationary 
point. Performing the Gaussian integral in Equation (A.7) leads to the JV-dimensional stationary 
phase equation: 

/ - X ,     {lK)m G^^fi^^. (A.8) 
^p\ deta'OCi,) 

The matrix signature function in Equation (A.8) is a matrix generalization of the "sgn" function: 

sig(M) = (# of positive eigenvalues of M)-(# of negative eigenvalues of M). 
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